<table>
<thead>
<tr>
<th></th>
<th>Clean entire part:</th>
</tr>
</thead>
</table>
| 1 | a. Use an approved solvent-based wax and grease remover (check local regulations) and a clean towel. Dry thoroughly.
 b. Follow with waterborne pre-cleaner and a clean towel. Dry thoroughly. |
| 2 | Inspect part for imperfections and damage. Determine what repairs should be made if any (follow all process documents for repairs made to the part.) |
| 3 | Prepare bare steel areas—after making any necessary repairs, sand exposed steel using a DA sander with 120-180 grit sandpaper and interface pad. Re-clean entire part. Spot prime bare steel areas as outlined below in Step 4A or 4B.
 IMPORTANT: to avoid galvanic corrosion, never use the same piece of sandpaper on both steel and aluminum. Avoid cross contamination of airborne steel and aluminum particles generated in the same shop areas. |
| ! | Prime bare steel substrates immediately.
 IMPORTANT: oxidation can form on exposed steel surfaces in as little as 15 minutes! If necessary, scuff and re-sand prior to priming. |
| 4-A** | Etch Primer followed by surfacer or sealer and PPG topcoat system (refer to PD-0705WB or PD-0705SB).
 IMPORTANT: do NOT apply epoxy primer, body filler, or topcoat directly over etch primer. |
| 4-B** | Epoxy Primer followed by body filler, surfacer, sealer and PPG topcoat system (refer to PD-0705WB or PD-0705SB). |

NOTES:
To prevent dissimilar metal corrosion where bare metals make contact with one another (bolts, rivets, hinges, etc.), **ECK® (Electrolysis Corrosion Kontrol)** should be applied. Refer to ECKPB01 for details.
Refer to individual product sheets for complete mixing and application procedures and approved product systems.